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Abstract

We review the progress made in computational vision, as represented by Marr's ap-
proach, in the last fifteen years. First, we briefly outline computational theories developed
for low, middle and high-level vision. We then discuss in more detail solutions proposed
to three representative problems in vision, each dealing with a different level of visual
processing. Finally, we discuss modifications to the currently established computational
paradigm that appear to be dictated by the recent developments in vision.
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*1 Vision as an information-processing task

Contemporary cognitive science construes mental processes as computations defined over rep-
resentations [126]. Under this view, visual perception, in particular, is defined as the process
whereby light patterns impinging on the retina are transformed into internal representations.
The problem of interpreting a retinal input is illustrated in figure 1, showing a photograph
of a natural scene and an array of the intensity values corresponding to a part of it. These
intensities are the raw data of vision, as they arrive in the camera or at the retina. To
appreciate the difficulty of visual recognition, one may try to identify the object (present in
the scene) described by this array.

Computational vision sets out to understand theoretical aspects of visual perception, to
explicate possible strategies of solving the emerging problems, and to explore their biological
and artificial implementations. This paradigm emphasizes the need for an interdisciplinary
approach: machine vision can serve as a testbed for psychological and neural models of visual
function, while biological vision can supply useful hints in choosing feasible approaches to
problems in visual processing by providing examples of workable solutions.

The problem of understanding visual perception in information processing terms has been
formulated most cogently by Marr and Poggio ([92], [96], [93]), who argued that vision (and,
indeed, any information-processing task) may be studied at three distinct levels. At the top
level they placed the computational theory of vision, in which the problem is characterized
as a mapping from one kind of information to another, and the abstract properties of this
mapping are analyzed. At the middle level, there is the choice of algorithm for the mapping,
determined, among other factors, by the nature of representation at its input and output.
At the lowest level, there are the implementational details, such as the physical realization
of the representation and the algorithm.

In the original formulation, the three levels were only loosely coupled. Nevertheless,
it appears that any commitment to a specific computational formulation of vision would
inevitably affect the algorithm level. In particular, as we shall argue, Marr's definition of
the computational purpose of vision have influenced the algorithm-level theories of an entire
school of vision research. Marr held that the representation of the shape of an object is quite
different from the representation of its use and purpose, and that vision alone can deliver
an internal description of the shape of an object, even when the object is not recognized in
the sense of understanding its use and purpose ([93], p.35). Together with the assumption
that a good way to represent an object is to build a three-dimensional model of it, this
view resulted in many current theories of visual recognition relying on the detection of 3D
primitives [14], or requiring a library of 3D object models ([87], [156]). In biological visual
systems, in comparison, the question of representation appears to be far from settled. As the
retinal image is transformed with each successive processing stage, the theories concerning
the nature of representation diverge more and more widely, reaching no consensus as to what
is the ultimate visual representation of objects, scenes and events ([140], [130]).

Solutions to many visual tasks appear to be inherently ambigu us. For example, assum-
ing, as Marr seems to have done, that the purpose of vision is to reconstruct the spatial layout
of the outside world, one is confronted with the difficult problem of ambiguity of inferring
the third dimension from retinal projection. This ambiguity is a necessary consequence of
the imaging process, during which depth information is lost. Marr proposed to compensate
for this loss by constraining the solution to the reconstruction problem to conform to a priori
assumptions, dictated by our knowledge of the physical world. The research program based
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on this approach advanced our understanding of different aspects of vision, such as perceptual
grouping, stereopsis and motion perception.

In areas in which physical constraints are hard to define, as in object recognition and
scene understanding, the reconstructionist research program runs into difficulties. Recently
implemented recognition methods ([87], [156], [145], [49], [70]) appear to circumvent the
problem of 3D reconstruction, either by addressing other important issues in recognition,
such as viewpoint normalization, while assuming that the 3D models of objects are built into
the system, or by carrying out the entire recognition process in 2D.

In this chapter, we review the progress made in computational vision, as represented
by Marr's approach, in the last fifteen years. Section 2 outlines computational theories
developed for low, middle and high-level vision. Section 3 contains a more detailed discussion
of solutions proposed to three representative problems in vision, each dealing with a different
level of visual processing. The last section suggests modifications to the currently established
computational paradigm that appear to be dictated by the recent developments in vision.

Since Marr's influence on vision research has been the strongest at MIT, we follow in
our review the development of the MIT perspective on computational vision. Other recent
reviews of computational and machine vision include ([21], [62], [41], [132] and [57]).

2 The components of vision

The analysis of images can be done at different levels. Low-level vision undertakes the
reconstruction of the visual world, but only in a limited sense. Borrowing from Marr's
terminology, its end product is a kind of 21D sketch of the surrounding scene: a representation
in which many attributes of the visible surfaces are made explicit and used as labels in a
scene-based map. Among the attributes computed at this stage are the relative motion
and depth of the visible features, as well as luminance, color and texture based descriptions
of different surfaces. Information from the different visual cues may be further processed
by middle-level modules that compute more abstract properties defined over the extracted
features. Combining surface patches and building descriptions of objects is within the scope
of high-level vision.

The rest of this part is organized as follows: in sections 2.1, 2.2 and 2.3 we review research
in low-level, middle and high-level vision, respectively, and in section 2.4 we review some of
the aspects of neuronal modeling in the context of vision.

2.1 Low-level vision

One possible definition of the domain of low-level vision is through the notion of bottom-up,
or data-driven, processing (as opposed to top-down, or model-driven processing). Low-level
vision is concerned with those transformations of the input image that are common to most
visual tasks and can be carried out as fast as the input changes, given the resources of the
system.

To some extent, the analysis of the different visual cues can be done independently of
each other and in parallel. Different behavioral tasks such as navigation, recognition or high
precision manipulation may also require the extraction of different kinds of visual information.
It is not clear, though, how independent the analysis of the different low-level modules can
and should be and to what extent information should actually be integrated. The question of
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module interdependence way be approached both through the development and integration
of low-level algorithms and by the study of biological vision systems.

Evidence from human visual psychophysics suggests there is at least some degree of in-
dependence among the modules. For example, one can easily understand black and white
movies that lack color and stereo, and 3D structure can be perceived in extremely impov-
erished stimuli, such as the projections of rotating wire-frame objects [162], or random-dot
stereograms [73]. Physiological evidence for module independence is provided by the existence
of separate subcortical and cortical pathways carrying different kinds of visual information
([142], [102], [174); see also [77], p.381). This independence is probably not complete: single
units that respond to several different cues, such as stereo disparity and direction of motion,
are found in some visual cortical areas ([35]; cf. [27]).

2.1.1 Stereopsis

Since the image on the retina of an eye, or in a camera, is obtained by projecting a three-
dimensional world onto a two-dimensional surface, the information on the third dimension,
depth, is lost. However, a perception of depth can still be achieved by stereopsis, i.e., by
combining information from two or more images, taken simultaneously from slightly different
positions, e.g., by the two eyes. In human vision, binocular stereo, together with other cues
such as motion and perspective, is an important source of depth information.

The importance of seeing depth in manipulation tasks becomes clear if one attempts to
thread a needle, or to insert a key into a keyhole, with one eye closed. The importance
of stereo in recognition tasks seems to be more limited, as people can recognize objects in
drawings and photographs that lack binocular information. Nevertheless, much attention
has been given to the analysis of stereo vision, mainly because the goals of stereo seemed
relatively simple and well understood, and because stereo has been demonstrated by Julesz
to create a perception of 3D shape in the absence of any other cue ([731; see figure 2).
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Figure 2: A random dot stereogram. The left and the right images should be viewed by the
left and the right eyes, respectively. When the two images are fused, a square floating in
depth above the background appears in the center. This is an example of shape perception
when the only cue is stereopsis: no monocular shape cues are present in either image.

In computer vision algorithms, the extraction of depth from binocular stereo begins with
the formation of a disparity map by matching the two images (the disparity of an object is
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defined as the difference between its positions in the two images). Thus, a disparity value
is assigned to every location in the image. The representation of disparities in the brain is
different: cells tuned to a relatively narrow range of disparity are found in the primary visual
cortex along with cells that respond selectively to features whose disparities are higher or
lower than certain values [118].

In a random dot stereograrn, e.g. in figure 2, (and in many natural scenes) matching
objects in the two images to compute disparity is difficult. For every object there are many
potential target matches, all but one of which are false. Two constraints on matching were
proposed to solve the false targets problem [95]. The first constraint, uniqueness, forces each
object in one image to be matched to at most one object in the other image. The second
constraint, smoothness, requires that nearby objects in one image be matched to nearby
objects in the other image. Most of the existing stereo algorithms, as well as most of the
theories of human stereo vision, incorporate these two constraints.

The matching of stereo pairs of complicated scenes remains difficult even after the appli-
cation of these constraints. For example, objects may look different in the two images, due to
different perspective distortions. For images that have enough texture, e.g., in random dot
stereograms, matching can be done by cross-correlation of regions in the two images ([111],
[171]). Many attempts have been made to obtain a general matching algorithm by the use
of more sophisticated matching techniques ([9] is a review of early algorithms; see also [101],
[59]). Two examples are multi-resolution matching (processing the images at several levels
of detail; [97], [48], [100]) and adjusting the fixation point to control the range of disparities
in the images [48]. After intensive development, a few of the algorithms appear capable of
achieving better performance on a single stereo pair than that of the human visual system,
albeit at the cost of a high computational complexity.

Despite the impressive performance of some existing stereo algorithms, problems with the
basic paradigm of applying physical constraints arise already in this relatively narrow domain.
Specifically, imposing the constraints of uniqueness and smoothness on the matching process
may be detrimental in some situations. For example, the smoothness assumption breaks
down for scenes that include transparent objects, such as fences. Looking through a fence,
one may see a tree to the left of a given bar in the left eye and the same tree to the right of
the same bar in the right eye. (It should be noted that simple modifications of the continuity
constraint can overcome this problem [124]). A more serious problem with smoothness arises
at those locations in the images where there are depth discontinuities. Smoothing across
discontinuities is bound to produce errors in stereo (and other low-level vision algorithms
that employ this constraint, such as shape from shading and motion; see sections 2.1.2, 2.1.4
and 3.2). Among the recent studies that address this problem are [45], [181 and [144]. See
also [122] for an overview of the use of smoothness constraints in low-level vision.

There is also evidence that human vision may not always follow the uniqueness assump-
tion and that people may perceive simultaneously several surfaces corresponding to multiple
matchings between elements !n the two images [167]. In some cases the relationship between
disparitic derived from matching and perceived depth is not unequivocal. For example, the

depth perceived in a dot pattern may correspond to an average disparity, rather than to one
of the disparities derived from a possible matching [103].

A major open problem in stereo is what the representation at the output of a stereo
system should be. The disparity field, once computed by a matching algorithm, can be used
to extract relative depth information. Objects with large disparities are usually closer to theviewer than objects with small disparities (when the optical axes of the cameras are almost
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parallel). If the location, the orientation and the focal length of both cameras (or eyes) are
known, a simple geometrical transformation can be used to compute the exact depth from the
disparities. Typically, however, the precise camera parameters are not known. Computing
the parameters from the disparity field is possible, though computationally expensive and
sensitive to noise [62]. It is unclear whether this computation is necessary or whether relative
depth is sufficient for all practical purposes ([7], [168]).

2.1.2 Motion

The analysis of motion is similar to stereo in that it involves the analysis of a set of images
of a given scene. The differences are that the images are taken in succession rather than
simultaneously, more than two images may be available for analysis, and the objects may
undergo an arbitrary transformation between the images. Specifically, in stereo it is assumed
that the two images are taken by two fixed cameras (eyes) whose relative location is known,
at least approximately. When images are taken at different times, any object can translate in
any direction, rotate and deform, so that the geometrical transformation between the images
is not sufficiently defined, unless some assumptions are made. Among the goals of motion
analysis are the extraction of depth information for shape perception and navigation (possibly
in a less precise way than stereo), the segmentation of an image into distinct objects, and
the identification of moving objects.

Psychophysical studies indicate that motion analysis alone is sufficient to extract shape
information when the moving objects are rigid bodies (that is, the distance between any
two points on an object remains constant with time; [162], [152]). The rigidity constraint is
useful to make the problem computationally tractable ([152]; see [153] and [56] for a review).
It is derived from a computational analysis of the problem and, similar to the constraints
imposed in stereo analysis, it should be applied with care. There are many examples where
humans perceive nonrigid motion (e.g., expansion and contraction), even though a rigid
motion interpretation (such as a rotation in depth) is possible (see [4], [53]). In some cases,
the motion of nonrigid objects leads to a clear perception of shape. For example, watching
a person walking in the dark with small lights attached to the joints, one can perceive a
human figure walking ([71], [60]). Although several recent studies address the issue of the
interpretation of nonrigid motion, the algorithms they develop usually allow only certain
classes of nonrigid transformations, such as bending (see, e.g., [81] and [29]).

Similar to the analysis of stereo, the analysis of motion can be divided into two stages: the
matching, either of features, or of regions, in the successive images, followed by a computation
that relies on the resulting disparity information. Another approach involves the computation
of optical flow (the instantaneous 2D velocity field) instead of the motion disparity map.
This computation can be presumably done by local intensity change detectors (e.g. [172]). A
principal difficulty in the first approach is matching, whereas in the optical flow formulation
it is relatively high sensitivity to noise, associated with numerical differentiation [62]. The
distinction between the matching and the optical flow formulations parallels the difference
between long-range and short-range motion perception processes observed in psychophysical
studies [20].

The matching problem is more difficult in motion than in stereo, for example because of
changing illumination and because of moving shadows, whose motion differs from the true
motion of the objects. As in stereo, a smoothness constraint, equivalent to the assumption
that the velocities of different features change slowly over the image, appears plausible and
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is used by many algorithms ([64], [53], [107]). Typically, computer vision algorithms en-
force smoothness of velocity either over regions of the image [64], or along its contours [53].
Psychophysical findings suggest that both ways of imposing smoothness may coexist in the
human visual system. For example, the perceived motion of points on a contour is similarly
affected by the motion of neighboring points and of more distant points that lie on the same
contour [108].

Given matched images, there are many ways to recover the three-dimensional structure
of the objects. Early studies of this problem concentrated on the issue of minimal informa-
tion needed to recover unique structure from motion ([1521, [31], [123], [104], [150], [165]).
One major problem common to the algorithms that recover structure from motion is their
numerical instability [153]. To decrease the resulting sensitivity to errors, motion informa-
tion may be pooled over many features (extended space; see [62], [231), or over many time
frames (extended time; see [154]). Human vision appears to use both extended time and
space analysis ([71], [55]). Some psychophysical evidence suggests that, in disagreement with
most structure from motion algorithms, the perception of 3D structure may not depend on
prior perception of motion [1571.

It is still an open question to what extent the exact structure of objects is necessary to
fulfill the ultimate goals of vision. Some shape information, such as the classification of object
surfaces as convex, concave, planar, or hyperbolic (saddle-like) can be obtained without the
complete recovery of the exact locations in space of all the points in the image [166]. For
specific narrowly defined tasks, such as obstacle avoidance in navigation, an even simpler
analysis may suffice [110].

2.1.3 Edge detection

A problem common to the design of all low-level vision modules is the choice of the input
representation. The raw input to the visual system, an array of intensity values (see figure 1),
does not suit well tasks that require image matching, for example, because of its sensitivity
to noise and to changes in the illumination. Intensity edges (image locations where the
intensity changes significantly) have been proposed as a more stable initial representation
for stereo and motion. Different definitions of significant change in intensity lead to different
algorithms for edge detection (see [34], [6] and [54] for reviews). Finding computationally
efficient algorithms that capture those edges that correspond to what we intuitively perceive
as edges proved to be a difficult problem. If edge detection is meant to provide a cartoon
of the image, i.e., the set of edges that has a physical origin, it effectively subsumes other
difficult problems in vision, such as figure-ground separation and object recognition.

Intensity edges may be defined as those places in the image where the rate of change
of intensity attains a local maximum. The derivative operation included in this definition
makes it sensitive to noise. Noise amplification can be reduced by smoothing the image before
subjecting it to the derivative operation. A computationally efficient, biologically plausible
edge detection operator based on this approach is a linear filter that combines smoothing
(by a convolution with a 2D Gaussian) with differentiation (by the application of a 2D
Laplacian, a rotationally symmetric operator). Equivalently, the image may be convolved
with the Laplacian of a Gaussian. The edges are then found by locating the zero-crossings in
the output of the convolution [931. Psychophysical evidence [164) suggests that zero-crossings
may be involved in early processing in human vision, along with additional features, such
as intensity extrema. (For an anatomical model of zero-crossing detection in the retina see
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1133]).
Since the Laplacian of Gaussian operator is spatially symmetric, it ignores the asymmetry

of edge, which are one-dimensional curves with a preferred direction. Some algorithms
address this problem by computing second directional derivatives of the input [52]. The
computation of the second derivative in the direction of the intensity gradient has been shown
optimal for the detection of oriented edges [149. As in stereo, a multi-resolution approach
(computing the edges at several levels of smoothing) proved useful in edge detection. A widely
used well-engineered implementation of edge detection that employs both approaches is due
to Canny ([261; see figure 3). Labeling edges according to their physical origin (shadows,
occluding contours etc.) is a subject of current research (e.g. [44]). Edge labeling may be
useful in tasks such as object recognition.

_142
Figure 3: Left: an image of a natural scene (same as in figure 1). Right: intensity edges
extracted from this image by the Canny algorithm [26].

2.1.4 Shape from shading and shadows

Shading information seems to be quite important in human shape perception [63]. In the
perception of shape from shading, the visual system must separate intensity changes that
are caused by changing orientation of object surfaces from those due to changing surface
reflectance (including color) and illumination. As an example of the perception of shape
from shading, consider the human face in figure 4. The basic information on the 3D shape of
the face in this image is obtained from shading analysis (e.g., the nose appears to protrude
from the face because its flanks are shaded darker than its tip).

When the illumination and the viewing direction are fixed and the color is constant, the
shading of a surface depends solely on its local orientation. When posed quantitatively, the
problem of inferring shape from shading turns out to be one of the most difficult in low-level
vision. The main complication is ambiguity: a shaded image can be interpreted in many
different ways. For example, a concave surface, a convex surface and a saddle-like surface all
appear the same from certain viewpoints. If surface color is unknown and variable, computing
shape from shading beconies even more difficult.

Assuming a simplified sirface reflectance model, and given some a priori knowledge about

8



Figure 4: A shaded image of a face. The basic information on the 3D shape of the face in
this image is obtained from shading analysis (e.g., the nose appears to protrude from the
face because its flanks are shaded darker than its tip).

the objects in the image (e.g., the depth along the outlines of the objects), the exact shape
from shading problem becomes solvable, though still computationally difficult ([170], [69],
[62]). A further assumption of oblique illumination may substantially reduce the computa-
tional complexity [115], although the problem of self-shadowing, neglected by most algorithms
including [115), becomes significant. In such cases, special shape from shadows algorithms
[138] may be employed to infer shape from the distribution of shadows in the image. One
complicating factor, mutual illumination (a secondary illumination due to the reflectance of
light by other objects in the scene) is neglected by all of the above algorithms. Recent work
has shown that, despite the simplified conditions assumed by most of the shape from shading
algorithms, mutual illumination can make the problem more ambiguous than had been pre-
viously appreciated [43]. On the other hand, experiments with computer graphics systems
indicate that simulating mutual illumination is important for the creation of realistic-looking
images.

Recent psychophysical data suggest that humans use shading information in a limited way
([10], [147], [25]). People seem to use shading information to build qualitative descriptions
of object surface (e.g., in terms of convex and concave regions), rather than to compute
exact shape from shading (in light of the complexity of extracting shape from shading, these
findings may not come as a surprise). The computation of qualitative shape from shading
may be facilitated by using highlights [171, which are a nuisance in most exact approaches
([16], [131]). Finadly, humans appear to employ high-level heuristics, such as the assumption
that the scene is illuminated from above, to disambigt:'ite the shape from shading problem
[131].
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2.1.5 Color

In human vision, color contributes important information for object recognition, although its
contribution is by no means necessary for most everyday tasks. The human visual system
exhibits an impressive ability to infer the correct color of objects under illumination that may
vary in direction, intensity and spectral content. Thus, while light arriving at the retina from
a given surface patch under different illuminations may have different spectral compositions,
the patch would normally appear to have the same color in both cases. This phenomenon
is called color constancy. It has been suggested that color constancy can ensue if we assume
that the color of illuninant changes slowly and smoothly, whereas surface color changes
abruptly. Many algorithms rely on this assumption to assess the true color of the surface
([84], [90]; (66] show that a linear color operator can be learned from examples). Under
the assumption that all colors appear in the image with equal probabilities, the color of the
illuminant can be estimated by averaging color over large neighborhoods of the image [831.
Another approach uses the color of highlights to compute the color of the illuminant [85].
Psychophysical evidence suggests, however, that the human visual system does not use this
specific technique [67].

Humans perceive color by having three different types of receptors in the retina whose
peak sensitivities are in the red, green and blue regions of the spectrum. Thus the dimension
of the color space perceived by humans is only two, not considering the overall brightness.
This means that there are many different reflectance functions that appear to humans to
have the same color. A principal component analysis of the distribution of surface reflectance
functions of natural objects and of ambient daylight reveals, however, that the number of
degrees of freedom needed is actually small. More specifically, the color of many natural
objects can be largely approximated in terms of only three base functions (see (89], [24]).

2.1.6 Texture

The analy.< of texture deals with statistical properties of collections of features (textons
or elementary units of texture [74]) that cover object surfaces. Statistics of texture may
contain important perspective information and may enable the segmentation of the image
into distinct objects. For example, in the image of a tilted uniformly textured plane the
density of elements diminishes in the direction away from the viewer, providing a hint to
the orientation of the plane in depth. For non-planar objects, the distribution of texture
elements is more complex: a sphere sprayed with paint projects to a circle filled with dots, in
which the density of the dots is low around the center and increases towards the periphery.

Differences in the statistical distribution of texture primitives may help segment the
image into distinct objects (see (13] for a review; [160], [28]). If the analysis is based on
complex texture elements [12], it is first necessary to identify the elements in a hierarchical
manner and then compute their distribution in the image. The characterization of useful
textons (in particular, those involved in human perception of texture) has been a subject of
extensive research [75]. One relevant question is that of the relationship between texture-
based segmentation and the structure of the constituent textons. Another theory relies on
a statistical analysis of the raw intensity values in the image [74]. Gradients of the size
distribution and the density of textons can be interpreted as depth cues for receding surfaces
([46]; cf. [141]), through Fcmi .r analysis [5] or statistical assumptions about the scene [169].
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2.1.7 Occluding contours

A line drawing of a complex 3D object, containing no shading, stereo or textural cues, may
provide information sufficient for its identification and for the perception of its shape. One
major source of information in a line drawing is the shape of the object's outline, or the
occluding contour. Mar [91] argued that by tnemselves the occluding contours are not suffi-
dent for shape classification. He therefore concluded that our ability to perceive the shape of
an object from its outline is achieved through the imposition of strong constraints on possible
shapes of objects, i.e., that most shapes can be described in terms of volumetric primitives
called generalized cones [15]. Koenderink [801 showed, however, that such restrictions are not
necessary, and that occluding contours carry important information about shape. Specifi-
cally, he showed that a concave segment of the object's boundary implies that the object's
surface is locally hyperbolic (saddle-like), while a convex occluding contour implies a locally
elliptic (convex or concave) surface. It should be noted that saddle-like regions are good
candidates for object segmentation, and that human vision appears to use simple heuristic
rules of this type in achieving descriptions of objects in terms of their parts [61].

2.1.8 Low-level vision: an interim summary

In distinction from other theoretical approaches, computational study of vision combines an
analysis of the computational strategies employed by biological systems with psychological
and physiological investigations, and with building artificial vision systems. Thinking in
terms of representations and their transformations and subjecting the resulting theories to
empirical tests proved especially fruitful in the domain of low-level vision, or the bottom-up
recovery of visual properties of the environment. The interaction between computational,
biological and machine studies led to a better understanding of the difficulties involved in
low-level vision, and to a reopening of basic questions concerning the output representation,
the physical constraints and the modularity of low-level processing. These issues become even
more important at the higher levels of visual processing, where at present little feedback is
available from empirical investigations.

2.2 Middle vision

Two classes of visual operations appear to fall outside the scope of both the input-driven low-
level processes and the high-level goal-oriented ones. The first class includes processes that
operate on the "primal sketch" representation of the input, obtained in the first stage of vision
[92]. The purpose of these processes is, in general, the completion and the enhancement of
the primal sketch. These operations are lateral in the sense that they do not necessarily rely
on either a more detailed input than already available, or on higher-level cues. Examples
of phenomena that may involve such processes are boundary completion (figure 5, left),
interpolation of depth and motion information to regions that lie in between features used
to compute this information, spatial grouping of features (figure 5, right) and increased
perceived saliency of some contours relative to others ([92], [27], [137]).

Intermeiate-level processes of the second type may be described computationally as mul-
tipurpose visual routines [155], invoked at need by higher-level modules. These routines may
enhance the intermediate representation by making explicit spatial properties and relations
such as contiguity (of a contour) and insideness (of a feature with respect to the contour).
This type of information is useful in many visual tasks, such as recognition and navigation,
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Figure 5: Left: Kanisza's triangles, an example of boundary completion. Illusory contours
that form a triangle are seen to occlude three black disks. Right: an example of hierarchical
grouping by shape similarity and physical proximity. At the highest level, the small shapes
form a circle.

but is too abstract and resource-intensive to warrant automatic bottom-up computation. An
additional kind of routines may be involved in the computational substrate of visual atten-
tion, where the basic operations are indexing (marking a location in the visual field) and the
shifting of the processing focus to the marked location [155).

Grouping of edges receives increased attention in recent studies of middle vision. Lowe [87]
proposed to start the grouping by detecting image properties that are likely to convey useful
information about the 3D world. Among such properties are coUlnearity and parallelism: the
chance that edges that appear collinear or parallel in the image do so only by accident (due
to the particular viewpoint) is small. Another example of a middle vision operation on edges
is the computation of the saliency of curve segments by a simple local mechanism [137. In
many cases, this operation can isolate perceptually important curves in a noisy edge map
(produced, e.g., by the Canny method). Our last example, which resembles visual routines in
that it operates "laterally" on the intermediate representations, is the integration of different
low-level cues (e.g., [120], [3]).

The advances in the computational theory of integrated low and intermediate level vi-
sion are beginning to draw the attention of psychologists and physiolopits. Psychophysical
evidence indicating that the human visual system may indeed combine different cues into an
integrated representation can be found in [27]. Some of the recent experiments that address
the issue of intermediate level vision and support the existence of boundary tracing and in-
dexing as visual routines are described in [72] and [128]. An example of a neurophysiological
study of attention in monkey is [105], which describes the modificatioa of the receptive field
of an extrastriate cell by attention shifts. Cells that respond to abstract visual entities such
as illusory contours were found in the striate cortex of the monkey [159].

2.3 Object recognition

An intelligent visual system is expected to allow its host to navigate through the environment
and possibly to manipulate any objects present in it. Keeping a visual library of models of
potentially important objects enables such a system to recognize an object and to select an
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appropriate behavior based upon its past experience. Consequently, computational theories
of object recognition postulate that there exist in the visual system representations of fa-
miliar objects and scenes. To recognize an object, the system compares it with each of the
stored models, or templates [112]. An estimate of the goodness of fit between an object
and a template can be obtained, e.g., by a correlation-like operation, in which the two are
superimposed and the proportion of pixels that agree in their values is computed.

Figure 6: The appearance of a 3D object can depend strongly on the viewpoint. The image
on the right is of the same object as the image on the left, rotated in depth by 900. The dif-
ference between the two images illustrates the difficulties encountered by any straightforward
template matching approach to 3D object recognition.

Recognition of 3D objects seen from arbitrary viewpoints is difficult because an object's
appearance may vary considerably depending on its pose relative to the observer (see figure 6).
Thus, while straightforward template matching [2] may be useful in the recognition of 2D
objects in a controlled environment, it will not work for 3D object recognition, unless a
template is stored for each view that will ever have to be recognized. Although the extent to
which people can recognize novel, radically different, views of 3D objects is not clear ([134],
[135]), we obviously do have some ability to generalize recognition to novel views. This ability
is termed visual object constancy (see e.g. [65]).

Most of the schemes for object recognition proposed to date can be divided into three
main classes, according to their approach to the problem of object constancy [156]. The
first approach assumes that objects have certain invariant properties that are common to all
their views and different between object classes (in practice, this twofold assumption proved
difficult, if not impossible, to satisfy). Under this approach, objects are represented by vectors
of property values, or, equivalently, by points in a multidimensional space. Recognition then
becomes a problem of clustering in this space (e.g. [36]).

A second approach to object recognition relies on the decomposition of objects into sim-
ple generic constituents. The components are generic in the sense that all objects can be
described in their terms. For a structural approach to succeed, the components must be
rapidly and reliably detected in any given view of an object, otherwise the problem of com-
ponent identification tends to become as complex as object recognition itself. An analogous
situation results if the breakdown of objects into components is too fine-grained, e.g. when
the components are individual edge elements or lines. In that case, component detection is
relatively easy, but their relationships become complicated.

Some older object recognition systems (e.g. [22]), and at least one psychological theory
[14], describe objects in terms of elongated volumes called generalized cylinders ([15], [94]).
The use of generalized cylinder primitives may be regarded as a compromise between the
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conflicting requirements of generality and detectability of object components. The description
of an object under this representation scheme is said to be object-centered, in the sense that
it involves the relations among the object's parts that do not depend on the viewer's position.

Variants of the decomposition approach that use contour-based primitive descriptions are
relatively successful in certain domains, such as industrial part recognition. The two major
limitations of this approach are that in many cases the precise shape of the object matters
more than its decomposition into parts, and that many objects have no natural structural
description.

A third major approach to object recognition, which may be termed normalization [114)
or alignment [156], addresses the requirement for precise characterization of object shapes
by employing a modified form of template matching. This approach may be illustrated using
the simple example of the recognition of a 2D shape such as the letter A, whose size is larger
than that of A's template stored in the system [109]. In this case, template matching can be
stil used, provided the input shape is first "normalized" by scaling it down to the standard
size.

The normalization approach can be extended to the domain of 3D object recognition. To
recognize a rigid 3D object, one may first normalize its appearance by undoing the trans-
formations (such as 3D rotation) by which it differs from a stored model. Combined with
algorithms that compute the necessary transformations, the normalization method has been
recently applied to the recognition of natural objects from unconstrained viewpoints ([87],
[156]). As the main idea of normalization is the ultimate use of template matching, 3D
recognition schemes based on normalization typically involve 3D object-centered templates
or models.

State of the art object recognition systems are typically based either on sophisticated
search techniques ([47], [49]), or on variants of the normalization approach ([19], [88), [145],
[68], [82]). These systems are mainly useful in tasks such as industrial part recognition, be-
cause of their reliance on strict geometrical models. In addition, search-based systems tend
to perform poorly in cluttered environments, where segmenting the object from the back-
ground is especially difficult. A partial solution to the first shortcoming has been offered in
the form of parametrized object models. For example, a pair of scissors can be recognized
irrespective of the angle between the two blades, if this angle is considered as an additional
dimension of the search space, along with the viewpoint parameters (this, of course, aggra-
vates the complexity of the search). The problem of sensitivity to clutter and noise may
in principle be approached through the use of distinctive labels for recognition primitives
(edges, corners etc.). It is not clear, however, what kind of labeling would be easy enough
to compute and at the same time informative enough to be useful in recognition. Another
possibility here is to use middle vision techniques (section 2.2) to enhance the image before
recognition is attempted. An additional problem, common to most recognition methods, is
that of indexing: choosing a subset of models that is likely to include a potential match to
the input, rather than trying to match the input to all known models. Finally, we remark
that automatic acquisition of object models appears to be the main difficulty associated with
those approaches that rely on 3D geometrical representation.

The two related questions, which recognition scheme is employed by the human visual
system and what is the nature of visual object representation, are at present unresolved [65].
In this respect, our understanding of recognition lags considerably behind our understanding
of low-level tasks such as motion detection and stereopsis. We discuss possible reasons for
this situation in section 3.
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2.4 Biophysics of computation

The possibility to separate abstract, or computational, from concrete, or implementational,
aspects of visual perception is a central feature of the approach to the study of vision ad-
vocated by Marr and Poggio [96]. Experience of the last fifteen years suggests that this
view is too idealized, and that the complexity of most problems in vision renders imprac-
tical algorithms that ignore constraints imposed by the available hardware. Moreover, the
choice of low-level visual modules for which a computational theory is sought depends on the
hardware. For example, depth can be recovered either through binocular stereo or through a
laser rangefinder. The computational problems that need to be addressed in these two cases
are clearly different.

One important source of differences between solution classes that are available to bio-
logical vision and those that best suit machine vision is the relevant computational primi-
tives. Brains process large amounts of low-precision data at a relatively slow rate and in a
highly parallel fashion, while most digital computers are serial, fast and can carry out high-
precision arithmetic operations (see, e.g., [66], [136]). A gradual realization of the importance
of hardware-related constraints led to an !ncreasing cooperation between the fields of neuro-
science and computational vision. One research goal in this field is to find out "what are the
biophysical mechanisms underlying information processing and how are these mechanisms
used to perform specific tasks" ([78], p.640).

Although the first detailed models of a neuron were proposed in the fifties [58], compu-
tational biophysics is still at an early stage of development. The study of neuronal function
is now approached at different levels, from that of the biophysics and biochemistry of mem-
branes to the level of ensembles of neurons. In particular, functional understanding is sought
through anatomical and physiological investigation, tightly coupled with computer simula-
tion (see [32], [79] for recent collections of papers in the field). Biochemical and electrical
mechanisms have been invoked as explanations of phenomena such as retinal adaptation and
spatial and temporal filtering. Models that involve networks of neurons with simple exci-
tatory and inhibitory connections have been proposed, among other computational tasks in
vision, for directional selectivity in the retina ([8], [148]), for the computation of a smooth
velocity field [53], and for the winner-take-all, or maximum, operation [173.

3 Case studies

From the preceding section, it appears that at the low levels of the visual processing the
developments in machine vision closely paralleled biological and psychological findings. In
high level tasks such as recognition, most machine vision approaches bear less resemblance to
their putative counterparts in biological systems. We identify radical differences between the
nature of representation at the low and high levels of the human visual system as a possible
cause of this distinction. We support this view by an analysis of three characteristic cases.
The first case is the measurement of visual motion, a low-level vision process whose objective,
the computation of a projected 2D velocity field, is well-defined in representational terms and
has support in biological studies. The second case deals with the integration of low-level visual
cues, a middle vision process whose biological reality has not yet been demonstrated. The
discussion of integration illustrates some of the engineering aspects of vision research. The
third case, recognition of three-dimensional objects, is an example of a field still in search
for a computationally efficient, biologically plausible representation paradigm, and in which
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current engineering solutions do not seem to converge on human-like performance.

8.1 The measurement of visual motion: well-defined representations allow
a principled solution

A standard formulation of the computation of visual motion distinguishes between two pro-
cessing stages [57]. In the first stage, the movement in the changing 2D image is measured. In
the second stage, motion estimates obtained through this measurement are used in different
ways, e.g., in navigation, or in the recovery of the 3D layout of the environment.

The problem confronted by the visual system in the first stage of motion perception
may be posed as the computation of a projected 2D velocity field, i.e., the assignment of a
velocity vector to each feature in the image (alternative, more qualitative formulations are
conceivable, but will not be discussed here). In this computation, the visual system must
rely solely on the changes in the light intensity patterns projected on the retina. In general,
many possible movements may give rise to the same changes in the retinal illumination.
The situation is further aggravated if the measurement of visual motion is carried out by a
mechanism which examines only a limited area of the image.

The ability of a limited-area motion detection mechanism to extract only partial infor-
mation about the real 2D velocity field, called the aperture problem ([161], [98], [64]), may
be illustrated by the following example. Consider an extended oriented pattern in the image,
such as an intensity edge, moving behind a relatively small aperture, representing the limited
area of the image analyzed by a motion detection mechanism. Because of the aperture, it
is only possible to perceive the movement of the edge in the direction perpendicular to its
orientation (figure 7). Some algorithms that incorporate smoothing (equivalent to using in-
formation from extended portions of the image) can solve this problem. An example of such
an algorithm is given below. It should be noted that differential formulations of velocity field
computation that yield a single equation per image point (e.g. [64]) are inherently sensitive
to the aperture problem. A complete 2D velocity may be recovered, at the expense of an

increased sensitivity to noise, by writing down second-order differential equations [158].
The output of a collection of limited-aperture motion detectors must be further processed

to recover a better approximation to the true velocity field. According to Marr's approach,
this can be done by constraining the solution to the recovery problem to comply with prior
assumptions that reflect the physical nature of the problem. The assumption that the velocity
field must be smooth ([98], [64]) proved to be a good compromise between physical reality and
computational convenience. Hildreth [53] incorporated this assumption into the measurement
of motion by formulating the computational problem as constrained minimization. The true
velocity V was estimated by minimizing an error functional 0 that expressed a compromise
between the requirement of smoothness and the compliance of the velocity component normal
to the image contours with the measured data:

[] ds +( V.U -V_12d
w ) + (a 5VjJ, 2)~a

where vj- is the measured velocity in the direction u ± perpendicular to the contour, 3 is a
weighting factor that expresses the confidence in the measured velocity constraints, and the
integral is taken along the image contours (in comparison, other formulations, e.g., [64], used
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Figure 7: An illustration of the aperture problem. Left: a bar E is moving behind a small
aperture A, so that its ends are not visible. Only the component v±. of the bar's velocity
that is perpendicular to the bar's orientation can be measured through the aperture. Right:
an example of a circle translating to the right. The component perpendicular to the circle's
contour, which would be computed by aperture-limited operators, does not correspond to
the true motion of the circle.

area-based constraints). The first term in the above expression corresponds to an explicit
imposition of the smoothness constraint, used to resolve the ambiguity illustrated in Figure 7.

Computing the maximally smooth velocity field consistent with the available evidence
was shown by Hildreth [53] to model a number of aspects of the human motion perception
mechanism, including visual illusions in which the algorithm and human vision fal in similar
ways. (Algorithms that use area-based formulations, e.g., [172], are also compatible with
psychophysical data.) Hildreth's algorithm was subsequently shown to belong to a general
framework for approaching the so called inverse problems, of which the reconstruction of
velocity field by aperture-limited detectors is a special case [122]. Following the theoretical
analysis of the problem, Movshon et al. [106] discovered what could be the physiological
correlates of the two successive stages of motion measurement: cells in cortical area V1
that are sensitive to the direction of motion in such a way that they can provide only the
component perpendicular to image contours, and cells in area MT that appear to combine
the outputs of simpler detectors to provide the true direction of motion in 2D.

3.2 Integration of low-level vision cues: refining low-level representations

Biological vision systems are more robust and flexible than any existing computer vision
system, even in the relatively simple domain of low-level vision. One reason for this may
be that biological vision combines information from different low-level cues to form richer
and more robust intermediate representations. Since little is known about the nature of
intermediate representation in human vision, attempts to integrate low-level modules tend
to rely on engineering common sense and on mathematical tools such as probability theory.

The task of integrating low-level modules in computer vision encounters difficulties such
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as noisy data and differences between the output representations used by the individual mod-
ules. Most algorithms that attempt integration tend to deal only with modules that process
related cues (e.g., stereo, vergence and focus (1]). As as example of a more comprehensive
integration effort, we shall describe the MIT Vision Machine, a system, built around a par-
allel supercomputer, whose purpose is the integration of stereo, motion, color, texture, and
intensity edge data ([120], [44]).

The two basic observations behind this particular approach to integration are (i) that
physical edges, such as surface orientation discontinuities and object boundaries in the scene,
cause the appearance of discontinuities in the output of at least some of the low-level visual
modules, and (ii) that a generalized edge map would constitute a highly useful representation
of a scene (consider, as an illustration, how informative can a mere cartoon of a scene be).
Thus, combining information from different cues along edges, instead of over regions, may
result in a computationally tractable and useful integrated representation. In many cases,
the physical origin of the edges in this representation may also be deduced. For example, if
it is known that along an edge there is no depth discontinuity (i.e., the stereo disparities are
continuous) and no color discontinuity, it may be assumed that the edge is due to a shadow.
A physical classification of the edges obtained through the integration of different cues may
later be used in recognition and navigation.

Edge-based integration should start with a reliable map of discontinuities in the individual
low-level cues. Since the output of most low-level modules by themselves is unreliable, one
should choose the module whose performance is the most stable and consistent and use its
output as the basis for the integration process. A good candidate for the basic representation
is an intensity edge map, computed by the Canny algorithm [26]. Assuming that some of
the other edges, corresponding to discontinuities in depth, color and texture, are also found
by this edge detector, one can improve the reliability of the depth, color and texture maps
by forcing discontinuities in these maps to align with the intensity edges found by the more
reliable edge detector.

Since edge detection leads to noise amplification, unless the process includes sufficient
smoothing, the above approach to integration faces a dilemma. If the smoothing is too
strong, many of the discontinuities necessary for integration will be lost. Stereo disparities,
for example, should in general be smoothed almost everywhere in the image, except at the
boundaries between objects. The location of these is, of course, not known at the time
the disparity map is computed, that is, before integration. Different techniques have been
suggested to circumvent this problem, by performing a restricted smoothing ([144], [18]).
The MIT Vision Machine uses for this purpose a statistical method, originally developed
for image reconstruction ([45], [99]). This method employs Markov Random Fields (MRFs),
a mathematical structure that specifies the probability for a certain parameter to attain a
specific value at an image point in terms of the values of the parameter at the neighboring
points. The value at a given site is allowed to affect its neighbor's value only if there is no
discontinuity between the two. The placement of the discontinuities in this formalism is in
itself statistical: the state of the system is allowed to fluctuate, with edges being turned on
and off, until a stable configuration is obtained. This configuration is usually a less noisy
version of the original image. Since the MRF technique uses an explicit discontinuity map, it
appears well-suited for an edge-based integration system. The integration algorithm in such
a system may include the following steps:

1. Apply different low-level vision algorithms, in parallel.
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2. Smooth the output of each module with an MRF, constraining discontinuities to the
locations of intensity edges, in parallel.

3. Use the discontinuities in the MRF of each module to label edges according to their
physical origin, i.e., occluding boundaries, corners, shadow edges, specularity edges,
color edges.

4. If necessary, return to step 2 and use the labeled edges to improve the quality of the
output.

An example of the output of this system using real images is given in figure 8.

Figure 8: A cartoon-like representation of two objects segmented from the background using
stereo, motion, color and texture cues.

At present, this approach still falls far short of achieving human-like performance in scene
segmentation and in the classification of image edges. The major open problems in the MRF-
based approach to integration are the poor initial output of some of the low-level modules and
the need for a manual tuning of the MRF parameters. Furthermore, it is not clear whether a
simple and qualitative rule-based approach would not perform better than formal approach
of combining quantitative data.

3.3 Object recognition: looking for the right representation

It is difficult to find in the study of high-level vision a parallel to the achievements of the
combined mathematical, psychological and physiological approach that advanced our under-
standing of low-level visual tasks such as motion and stereo. In low-level vision many physical
assumptions have been found useful in dealing with the ill-posedness of inverse optics or the
reconstruction problem. In comparison, in high-level problems such as object recognition rel-
evant physical constraints are scarce and key computational issues, in particular the nature
of representation, are highly controversial.

Consider the task of recognizing objects that belong to any fixed set, such as a collection
of typefaces. The major problem confronted by the visual system in this case is that of noise.
For example, machines can be trained to recognize complicated and diverse 2D objects such
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as printed characters that come in a variety of sizes and typefaces [76], with an efficiency
approaching that of a human. In another example of a restricted domain, the interpretation
of polyhedral scenes with shadows, relying on a complete enumeration of possible types of
polyhedral junctions, has been demonstrated by Waltz as early as 1975 [163]. In both these
cases, the finite domain places an effective constraint on the possible solutions.

When the shape of the objects is allowed to change continuously, but in a principled
manner and without affecting their basically discrete and finite classification, some physical
assumptions still apply and may be used to constrain the solution. In handwritten character
recognition, for example, phenomenological knowledge of the physics of motor control in
handwriting can be easily formulated in mathematical terms and leads to a simplification of
the recognition process [39]. In comparison, when the problem is to recognize an arbitrary
3D shape from any possible viewpoint, physical constraints can be applied to compensate for
only one source of image variability - the imaging process. The other part of the problem,
the variability of the intrinsic 3D shape of the objects, remains unsolved.

In many recognition problems, the nearest conceivable thing that resembles a physical
constraint seems too implausible or too impractical to be of any use. Consider, for example,
face recognition, an important visual task in primates, and a challenging application of
machine vision. A face recognition system that employs geometric models is bound to fail
when confronted with a familiar face bearing a novel expression, even if a great number
of templates corresponding to previously encountered expressions are stored. Applying the
physical constraint method in this case amounts to the inclusion of the knowledge of facial and
cranial anatomy in the recognition algorithm, an improbable requirement. It just might turn
out that a feasible face recognition system would have to rely on stored examples of familiar
faces bearing prototypical expressions more than on an algorithmic approach of computing
some standard face representation using anatomical constraints.

Even if standard representations, or models, of 3D objects are involved in recognition, it
is not clear what method of modeling is computationally most efficient, and what method (or
methods) is employed in human vision. A major point of controversy as to the nature of 3D
object representation regards the question of whether it should be object-centered (symmet-
ric with respect to the object itself), as advocated by Marr, or viewer-centered (dependent
upon the viewer's position relative to the object). Although in principle a 3D object-centered
representation can be readily constructed from a collection of 21D viewer-centered ones, in
practice building a 3D object-centered model only to use it later by comparing its 2D pro-
jections with input images ([871, [145], [156]) seems to be redundant. Similarly, it appears
equally unlikely that the human visual system goes through the effort of constructing com-
putationally unwarranted 3D models, or, alternatively, that it necessarily reconstructs the
third dimension of an input object before recognizing it (after all, we do recognize everyday
objects in visually impoverished line drawings).

Humans construct their library of object models through experience. It appears that 3D
machine recognition systems that use object-centered models fail to match this crucial com-
ponent of the human performance in recognition. The few 3D machine recognition systems
that are designed to learn object representations from examples ([70], [151], [119]) employ
viewer-based rather than object-based representation. Some evidence to the effect that the
ultimate representation need not be object-centered is already available. This evidence falls
into three classes, psychophysical, physiological and computational, discussed separately be-
low.
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3.3.1 Hints from psychophysics

The most straightforward way to investigate the nature of object representation in long-term
memory is to test it in a recognition task. An object-centered representation that does not
allow the system to infer what the object would look like from an arbitrary viewpoint is, for all
practical purposes, equivalent to a collection of viewer-centered view-specific representations.
Consequently, if the human visual system effectively employs object-centered representations,
a person should be able to recognize an object, previously seen from a limited range of
viewpoints, from a novel viewpoint.

It should be noted that the structure from motion theorems ([152], [150], [86]) indicate
that in principle the effect of having a full object-centered description of a 3D rigid body
may be produced by actually storing only a few of its 2D views. The ability of the human
visual system to infer the 3D structure of an object from a small number of its projections,
termed the kinetic depth effect, has been known for a long time ([162], (71]). An alternative
way to formulate the object-centered representation question is, therefore, to ask whether
the 3D structure perceived in the kinetic depth effect is retained by the long-term memory,
or whether this effect is a mere by-product of some other, more basic, perceptual operation.

Until recently, the ability of the human visual system to recognize objects from novel
viewpoints has been taken for granted. Palmer, Rosch and Chase were the first to demon-
strate that even for familiar objects speed and accuracy of recognition varies with viewpoint
[113]. A more direct test would involve novel objects, shown to the subjects under con-
trolled conditions which guarantee that some views remain unseen until the test time. Such
experiments, involving novel 3D wire-like stimuli, have been carried out by Rock and his col-
laborators ([134], [135]). In one series of experiments [134], subjects saw novel 3D wires, each
from a single fixed viewpoint. The subjects were subsequently shown other, similar, objects,
one at a time, and required to decide whether these were the familiar wires, displayed at new
attitudes, or unfamiliar wires. In these experiments, the subjects' performance approached
chance level when the in-depth rotational distance between training and test views was about
300. In another experiment [135], the test called for deciding whether one of two simultane-
ously displayed wire objects was a replica of the other object, shown at a different attitude.
Again, subjects performed poorly, even when given the opportunity to reason explicitly about
the relative positions of different features of the two objects. As during training the subjects
perceived the stimuli in 3D (due to binocular stereopsis), the lack of generalization to novel
views in this experiment could be attributed to the subjects' failure either to retain 3D infor-
mation, or to translate it into a format that would permit later generalization, e.g., into an
object-centered description. The likelihood of the first interpretation, namely, that subjects
do not include 3D information in a long-term memory representation of wire-like objects,
is diminished by the finding that the presence of binocular stereo cues significantly reduces
recognition error rate ([38]; see also [65], p.81).

Additional evidence in favor of the hypothesis that objects are normally represented in
long-term memory by collections of 21D viewpoint-specific descriptions comes from the ex-
periments of Tarr and Pinker [143], who found that naming time for 3D objects similar to
the ones used by Shepard and Metzler [139] increased linearly with the distance between
the presented view and the closest learned view. This linear dependence, present in a wide
variety of recognition tasks (cf. [113], [37]), is predicted by a theory that posits multiple-view
representations, but is difficult to explain within the framework of a theory of recognition of
the viewpoint normalization variety ([87], [1561). For example, Ullman's alignment scheme
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([156]; see section 2) specifies an algorithm that computes the hypothesized viewpoint of an
object model, given the positions of a few key model features in the input image. When
combined with a 3D object-centered representation of the model, this scheme should result
in recognition time that is independent of the viewpoint (unless implementational constraints
bring about such dependence, in which case the representation effectively ceases to be sym-
metric with respect to the object, i.e. object-centered).

3.3.2 Hints from physiology

The notion that the primate visual system employs view-specific representations of objects
is supported by the findings of Gross, Perrett and others ([51], [1171, [50], [116]) that cells
in the visual area IT in monkey respond preferentially to complex stimuli such as hands and
faces. Perrett et al. [1161 reported that some cells responded maximally to full views of a
face, others to the face tilted upwards or downwards by 45", and still others to profile and
back views of the head. The cells' response remained strong when the preferred view of
the face was displayed at different scales, or rotated within the image plane by as much as
90". If indeed these cells are at the top of the representation hierarchy in the visual system,
then their response pattern is most easily explained in terms of viewer-centered rather than
object-centered representations.

3.3.3 Computational considerations

Recent computational studies provide further support for the hypothesis that a recognition
strategy based on multiple-view representation can in principle account for much of the
human performance in object recognition ([40], [11], [119]). In particular, if the recognition
problem is formulated in terms of the approximation of a mapping that associates a standard
view of an object with any of its other views, powerful mathematical tools from function
approximation theory are available that can construct such a mapping from examples [121].
In other words, a system can learn to recognize an object from any viewpoint merely by
being exposed to a random set of a few tens of the object's views.

4 Discussion and prognosis

During the last decade, the combined computational and biological study of vision, pioneered
by Marr, has resulted in progress in some areas of vision research, notably, in understanding
low-level vision. The computational approach proved most fruitful when the problem at hand
could be formulated as a transformation between clearly defined representations. In other
words, principled computational solutions were first offered to those problems for which a
notion of competence (in Chomsky's sense; see [93], p.28) was readily available. One such
problem was binocular stereo, for which both the input representation (edge maps of the two
images) and the output representation (a dense depth map) seemed to be obvious.

The computational paradigm made an important contribution to the study of vision by
encouraging the generation of concrete and testable theories of performance. In many cases,
these theories eventually led to a revision of basic assumptions of the underlying theory
of competence. For example, when even the sophisticated stereo algorithms appeared to
be incomplete as models of humxan performance, the nature of the input and the output
representations in stereo came under questioning.
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The computational approach has also increased the understanding of the difficulties as-
sociated with high-level tasks, such as object recognition. Despite early enthusiasm, it now
becomes increasingly clear that no adequate competence-level theory is yet available for these
tasks. In particular, computational feasibility and biological (psychological and neurophysi-
ological) plausibility of 3D object-centered models as the ultimate representations in object
recognition is now being questioned. From the preceding review, it appears that a satis-
factory reconstruction of the visual world is not feasible, unless its aim is a viewer-relative
and qualitative (as opposed to absolute and quantitative) representation. Fortunately, it also
appears that carrying out an ideal reconstruction is not a prerequisite for seeing, insofar as
it does not seem that biological vision relies on such reconstruction.

The roots of the present situation in computational vision may be traced to the philo-
sophical foundations of the currently accepted computational paradigm in cognitive science.
An important part of Marr's argument in favor of the computational approach to vision has
been functionalist. The functionalist program in the study of mind [125] has been prompted
by the "suspicion that there are empirical generalizations about mental states that cannot
be formulated in the vocabulary of neurological or physical theories" ([42], p.25). Glossing
over technical details, a common version of the functionalist approach ([126], [127]) holds
that two intelligent agents are in the same psychological state (e.g., both believe that they
see a cat) if they are in the same computational state. In this sense, the two agents function
similarly, although their physical realizations may be different. Similarly, Marr and Poggio
suggested that functional, or computational, understanding of vision may be achieved in
separation from the understanding of its physical substrate, just as it is sufficient to study
aerodynamics to understand flight in both birds and airplanes ([93], p.345).

The advantages (and the feasibility) of the postulate of level separation as a research
strategy in vision seem now less substantial than a few years ago. At the same time, func-
tionalist theories of cognition are increasingly criticized from at least two points of view. One
line of argument starts with the claim that the functional level is not sufficiently abstract
to allow interesting generalizations about mental states ([127], p.74). Others claim that any
such generalizations are, in principle, unwarranted ([33], p.224; see also [129]), or depend on
a better understanding of the physical substrate of cognition [30]. A speedy resolution of the
uncertainty concerning the philosophical foundations of the functionalist program appears at
the present time unlikely.

Whereas a discussion of level separation in computational vision leads one to question the
basic premises of the functionalist program, another problematic issue mentioned above, that
of visual reconstruction as a goal of vision, can be addressed within the present paradigm.
Persistent difficulties with solving the inverse optics problem (reconstructing the geometry
of visible objects) prompt the search for a different competence theory of vision, one that is
formulated in terms of more plausible representations than geometric models. Many of the
emerging research directions can be described as an attempt to make the most of ,he rich in-
termediate representation provided by the low-level modules (see the preface to [132]). These
approaches focus on qualitative rather than quantitative representations (e.g. [146], [168]),
on active vision ([110], [7]), on the application of high-level rules to obtain fast approximate
solutions [131] and on massive use of parallelism, memory and learning ([120], [151], [119]).
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